
Loading
Our team specialises in the development of finite element methods to computationally simulate fluid flow, particularly low Mach number, transient, separated fluid flows in complex geometries and in the presence of strong multiphysics coupling. These models can be used to make predictions and answer scientific questions in problems ranging from blood flow through an arterial bypass graft to the flow over components of a Formula 1 racing car to explaining how the ocean circulates or predicting the response of the Earth's climate to increased CO2 in the atmosphere. What unifies these flows is that they have common features, such as vortices, that occur across a huge range of sizes and times; these features have a critical effect on the phenomena being studied. The range of these problem means that to address grand challenges such as the flow of blood in the numerous arteries of the human body, over a full Formula 1 car or the interaction of a massive array of tidal turbines, it is necessary to combine state-of-the-art modelling techniques with the capability to run models on massively parallel supercomputers. In recognition of the recent changes in computer hardware, this platform will enable the group to promote the next generation of developers to provide general purpose software that takes advantage of cutting edge computer science to enable effective use of parallel computers using emerging hardware in a way that is accessible to fluid modelling experts as well as computer scientists. Hence this platform brings together a team of computer scientists and computational engineers in a fundamentally multidisciplinary project, with the dual aim of providing flexible, internationally respected and widely adopted software libraries, and of training young researchers in this emerging area.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::12237cb8dedaa6d8c791022e3f033aea&type=result"></script>');
-->
</script>