Powered by OpenAIRE graph
Found an issue? Give us feedback

Learning an urban grammar from satellite data through AI

Funder: UK Research and InnovationProject code: ES/T005238/1
Funded under: ESRC Funder Contribution: 346,532 GBP

Learning an urban grammar from satellite data through AI

Description

This project will propose an urban grammar to describe urban form and will develop artificial intelligence (AI) techniques to learn such a grammar from satellite imagery. Urban form has critical implications for economic productivity, social (in)equality, and the sustainability of both local finances and the environment. Yet, current approaches to measuring the morphology of cities are fragmented and coarse, impeding their appropriate use in decision making and planning. This project will aim to: 1) conceptualise an urban grammar to describe urban form as a combination of "spatial signatures", computable classes describing a unique spatial pattern of urban development (e.g. "fragmented low density", "compact organic", "regular dense"); 2) develop a data-driven typology of spatial signatures as building blocks; 3) create AI techniques that can learn signatures from satellite imagery; and 4) build a computable urban grammar of the UK from high-resolution trajectories of spatial signatures that helps us understand its future evolution. This project proposes to make the conceptual urban grammar computable by leveraging satellite data sources and state-of-the-art machine learning and AI techniques. Satellite technology is undergoing a revolution that is making more and better data available to study societal challenges. However, the potential of satellite data can only be unlocked through the application of refined machine learning and AI algorithms. In this context, we will combine geodemographics, deep learning, transfer learning, sequence analysis, and recurrent neural networks. These approaches expand and complement traditional techniques used in the social sciences by allowing to extract insight from highly unstructured data such as images. In doing so, the methodological aspect of the project will develop methods that will set the foundations of other applications in the social sciences. The framework of the project unfolds in four main stages, or work packages (WPs): 1) Data acquisition - two large sets of data will be brought together and spatially aligned in a consistent database: attributes of urban form, and satellite imagery. 2) Development of a typology of spatial signatures - Using the urban form attributes, geodemographics will be used to build a typology of spatial signatures for the UK at high spatial resolution. 3) Satellite imagery + AI - The typology will be used to train deep learning and transfer learning algorithms to identify spatial signatures automatically and in a scalable way from medium resolution satellite imagery, which will allow us to back cast this approach to imagery from the last three decades. 4) Trajectory analysis - Using sequences of spatial signatures generated in the previous package, we will use machine learning to identify an urban grammar by studying the evolution of urban form in the UK over the last three decades. Academic outputs include journal articles, open source software, and open data products in an effort to reach as wide of an academic audience as possible, and to diversify the delivery channel so that outputs provide value in a range of contexts. The impact strategy is structured around two main areas: establishing constant communication with stakeholders through bi-directional dissemination; and data insights broadcast, which will ensure the data and evidence generated reach their intended users.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::31ee6303aa7097a2f506c050371d57ce&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down