Powered by OpenAIRE graph
Found an issue? Give us feedback

Using translational genomics to underpin germplasm improvement for complex traits in crop legumes

Funder: UK Research and InnovationProject code: BB/E024831/2
Funded under: BBSRC Funder Contribution: 186,411 GBP

Using translational genomics to underpin germplasm improvement for complex traits in crop legumes

Description

Legumes are a group of important plant species that, together with bacteria that live in nodules on the root, can convert nitrogen in the atmosphere to a form that can be used by plants. They include peas and beans as well as crop plants that are used for animal feed. Some legume species have been developed as 'models' that allow us to investigate genome structure, DNA sequence and the control of gene expression in a way that would be more difficult in crops. Model species typically have a small genome size, short generation times and an inbreeding system of reproduction. The barrel medic (Medicago truncatula ) has been developed as a model legume and, for example, is expected to have all its genes sequenced by the end of 2007. Information and resources from model species can be used to understand more about the genetics and genomics of crop plants in a way that will facilitate improved ways of breeding new varieties for the changing needs of agriculture. In this work we will use knowledge of Medicago truncatula to gain understanding of a closely related species, red clover. Red clover (Trifolium pratense L.) is an important crop for feeding animals (sheep, beef and dairy cattle) in the UK and many temperate parts of the world. In this work we will compare the genomes of the model and crop to lay the foundation for new approaches to breeding in the crop. We will do this in several different ways: (i) The sequences of long stretches of DNA will be compared. To do this we will use DNA that has been inserted into bacterial artificial chromosomes (BACs) in a way that allows it to be held together and suitable for sequencing. The extent of similarity in sequence between red clover and M. truncatula will tell us how closely related the two species are and the extent to which we can use information from the model e.g. to clone genes in the crop. (ii) The position of differences in DNA sequence (polymorphisms) will be mapped in the genome of red clover in such as way as to relate these differences to the physical genome as represented by the BACs (iii) A number of bio-informatic approaches will be used to extract information from DNA sequencing, physical and genetic mapping and to place the information found in the wider context of legume genetics. The bioinformatic component of the work will also facilitate the application of the knowledge gained and resources generated to the development of new varieties of red clover and other important crop species.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3452098b6106ab78785f2134b8bf29a5&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down