Loading
There is great interest in improving the capabilities of autonomous land vehicles, for a diverse range of applications ranging from inspection/repair in nuclear facilities, pipeline inspections, military surveillance, search and rescue, bomb disposal/mine clearance and space exploration rovers to household vacuum cleaners, lawn mowers and pool cleaners. One area of particular interest concerns the navigation of the vehicle and in particular measuring a vehicle's movements or localisation. Odometry or 'dead reckoning' is commonly used to calculate a vehicle's position, and requires some measure of the distance travelled. Currently, the most common technique for measuring odometry involves counting wheel revolutions using wheel encoders. This is prone to errors and inaccuracies, for example due to wheel slippages, unequal wheel diameters, misalignment of wheels, surface roughness and rounding errors due to the discrete sampling of wheel increments. The research proposed here is the development of an improved method of navigation feedback using non-contact optical sensing combined with digital image processing techniques.The research proposed here is the development of an improved method of navigation feedback using non-contact optical sensing combined with digital image processing techniques. The program will involve the construction and demonstration of a test system, the optimisation of processing algorithms and an assessment of its capabilities. This will be followed by the further development of the concept to provide other navigational information about the vehicle's rotation and the detection of vehicle slippages.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7306ac146557d43fcd56b86781d48eea&type=result"></script>');
-->
</script>