Powered by OpenAIRE graph
Found an issue? Give us feedback

Photovoltaic Technology based on Earth Abundant Materials - PVTEAM

Funder: UK Research and InnovationProject code: EP/L017792/1
Funded under: EPSRC Funder Contribution: 2,012,700 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
48
55

Photovoltaic Technology based on Earth Abundant Materials - PVTEAM

Description

To meet teraWatt photovoltaic (PV) capacity targets for 2050, solar modules will require: 1. Low manufacturing costs and carbon footprint as well as short energy payback time 2. To be incorporated into building-integrated systems 3. To be based on low-cost abundant elements Current thin-film PV technologies based on copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) have already demonstrated their potential to deliver on the first two requirements. These technologies are currently manufactured at the GW scale, with approximately 10% of the PV market worldwide. However, low abundance, high costs and high toxicity of key elements (In, Ga and Cd) present in active layers are set to severely limit the expansion of this technology in the next decades. Consequently, material substitution and the development of scalable (non-vacuum) processing technologies represent an extraordinary opportunity for the UK to grab an important share of the global photovoltaic market. The aim of PVTEAM is to lay the foundations of sustainable thin-film PV technology based on Earth abundant materials and scalable manufacturing processes. This will be achieved by developing processes and production technologies for materials and material systems to a level they can be taken up by manufacturing industries. This programme covers material specifications and performance, integration into cells and mini-modules as well as developing the technologies required for scale up. PVTEAM will specify a carefully selected range of binary, ternary and quaternary chalcogenides and oxides as substitutes to proven commercial materials. Using a multi-level screening approach, we will incorporate the best performing candidates into industrial processes based on "substrate" and "superstrate" configurations. The consortium involves five universities with state-of-the-art infrastructure for material development and characterisation as well as for device fabrication, testing and integration into PV modules. Material processing will be based on facilities available at the Sustainable Product Engineering Centre (SPECIFIC), which will be in charge of designing scale-up strategies and preparing techno-economic assessment. The PVTEAM industrial partners, Tata Steel, Pilkington NSG and Johnson Matthey, have a worldwide footprint on materials for the construction, coating and chemical industries. The consortium also includes SMEs, M-Solve and Semimetrics, which will provide means for the exploitation of new PVTEAM technologies in module fabrication and metrology.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 55
  • 48
    views
    55
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::77c14675dc7184111c54069683ed24f1&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down