Powered by OpenAIRE graph
Found an issue? Give us feedback

Tagging online music contents for emotion. A systematic approach based on contemporary emotion research

Funder: UK Research and InnovationProject code: ES/K00753X/1
Funded under: ESRC Funder Contribution: 91,294 GBP

Tagging online music contents for emotion. A systematic approach based on contemporary emotion research

Description

Current approaches to the tagging of music in online databases predominantly rely on music genre and artist name, with music tags being often ambiguous and inexact. Yet, the possibly most salient feature musical experiences is emotion. The few attempts so far undertaken to tag music for mood or emotion lack a scientific foundation in emotion research. The current project proposes to incorporate recent research on music-evoked emotion into the growing number of online musical databases and catalogues, notably the Geneva Emotional Music Scale (GEMS) - a rating measure for describing emotional effects of music recently developed by our group. Specifically, the aim here is to develop the GEMS into an innovative conceptual and technical tool for tagging of online musical content for emotion. To this end, three studies are proposed. In study 1, we will examine whether the GEMS labels and their grouping holds up against a much wider range of musical genres than those that were originally used for its development. In Study 2, we will use advanced data reduction techniques to select the most recurrent and important labels for describing music-evoked emotion. In a third study we will examine the added benefit of the new GEMS compared to conventional approaches to the tagging of music. The anticipated impact of the findings is threefold. First, the research to be described next will advance our understanding of the nature and structure of emotions evoked by music. Developing a valid model of music-evoked emotion is crucial for meaningful research in the social and in the neurosciences. Second, music information organization and retrieval can benefit from a scientifically sound and parsimonious taxonomy for describing the emotional effects of music. Thus, searches for relevant online music databases need not be longer confined to genre or artist, but can also incorporate emotion as a key experiential dimension of music. Third, a valid tagging scheme for emotion can assist both researchers and professionals in the choice of music to induce specific emotions. For example, psychologists, behavioural economists, and neuroscientists often need to induce emotion in their experiments to understand how behaviour or performance is modulated by emotion. Music is an obvious choice for emotion induction in controlled settings because it is a universal language that lends itself to comparisons across cultures and because it is ethically unproblematic.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a0495a27711170324bfe6d6518c44431&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down