Powered by OpenAIRE graph
Found an issue? Give us feedback

Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement

Funder: UK Research and InnovationProject code: BB/W020424/1
Funded under: BBSRC Funder Contribution: 201,619 GBP

Fighting Infection and AMR in broiler farming: AI, omics and smart sensing for diagnostics, treatment selection and gut microbiome improvement

Description

The fight against enteric infections while containing the uprise of antimicrobial resistance, represents one of the major challenges in contemporary broiler farming, with repercussions on both bird and consumer's health. Key to future, better solutions for surveillance, diagnostics and treatment selection, is to gain an improved understanding of the bird's gut microbiome, exploring the modifications its population of commensals and opportunistic pathogens undergo as a consequence of infection, treatment and development of resistant traits. In this project, we plan to explore the broiler gut microbiome, focusing on infection and resistance in relation to pathogens typically found in the gastrointestinal tract of the birds: Clostridium perfringens, Enterococcus cecorum, Escherichia coli and Salmonella spp. We cover also scenarios of co-infection with viruses causing dysbiosis of gut microbiome. We consider resistance/susceptibility to 8 classes of antibiotics: tetracyclines, sulphonamides, beta-lactams, fluoroquinolones, polymyxins, macrolides, diaminopyrimidines, aminoglycosides, whose use as therapeutics is diffused in the UK. We plan to collect a large amount of heterogeneous data from farms, feed and birds, covering normal production periods and infection events. Data will include results of microbiological analysis, whole-genome sequencing, shotgun metagenomics and phenotyping performed on faecal samples, on-farm management practices, as well as environmental sensor data and bird imaging. We propose to use machine learning and cloud computing to perform large-scale data mining and ultimately unravel the network of possible interactions amongst the observable variables, following broilers along their life cycle, and capturing episodes of infection, treatment and development of single or multi-drug resistance. Acquired knowledge may provide hints at the selection of observable variables acting as biomarkers, i.e, targetable by future solutions for real-time livestock monitoring, to detect/forecast infection or the presence/insurgence of resistant traits, and to support precision diagnostics and bespoke treatment selection. The results may also suggest routes to improve the birds gut microbiome, for example via feed additives, making it more robust to infection while at the same time inhibiting the development of resistance.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f4a36bd0f1208a91766076e6eda54187&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down