Powered by OpenAIRE graph
Found an issue? Give us feedback

High-energy, early transition metal hydrazides for N atom transfer reactions in synthesis and catalysis: scope, mechanism and applications.

Funder: UK Research and InnovationProject code: EP/H01313X/1
Funded under: EPSRC Funder Contribution: 345,541 GBP

High-energy, early transition metal hydrazides for N atom transfer reactions in synthesis and catalysis: scope, mechanism and applications.

Description

Group 6 transition metal hydrazides, (L)M=NNH2, occupy a pivotal position on the pathway for the biological and industrial conversion of N2 to NH3. In nature and in several important model systems this proceeds through a series of electron transfer and protonation steps. Considerable international effort has also been spent on trying to use mid-transition metal hydrazide complexes as reagents for the synthesis of value-added organo-nitrogen products. This holy grail concept of directly using atmospheric N2 as a commercial feedstock would by-pass the high-energy Haber-Bosch (NH3 synthesis) process. However, mid-metal M=NNR2 functional group reactivity is minimal. It is characterised only by transformations involving the NR2 (protonation or insertion/condensation involving N-H groups). No M=N bond reactivity is seen and N-N bond cleavage occurs only under highly forcing conditions using external reductants.Structural data and computational studies explain this: for mid-later metals NNR2 is best viewed as a neutral isodiazene :N=NR2. The more dative nature of the M--NNR2 bond and multiple bond character of N=N reduces the intrinsic reactivity at these two sites. In contrast, our X-ray and DFT results for Group 4 NNR2 systems find them to be reduced hydrazides, [NNR2]2-. Specifically, the N-N bonds are lengthened and weakened as the N-N pi* MOs are occupied; the M=N multiple bond is unsaturated and very reactive, further destabilised by the beta-NR2 lone pair. While sharing a simple formula NNR2 , mid-metal isodiazene and early metal hydrazide ligands are as fundamentally different as Fischer carbenes and Schrock alkylidenes. Just as early metal M=CR2 groups are intrinsically more reactive than later metal M=CR2, so it is for M=NNR2.We have recently developed three methods for making these hitherto undeveloped early transition metal hydrazides with Ti=NNR2 functional groups in very different environments. Preliminary results with a range of organic substrates (terminal and internal alkynes, nitriles, isonitriles, phospha-alkynes, CO2, isocyanates) indicate a wealth of cycloaddition chemistry. Remarkably certain alkynes and nitriles insertion into the N-N bond via a unique single N atom transfer step. We have also found this can be made catalytic so that a 1,2-diaminoalkene is formed catalytically at room temperature from a hydrazine and an alkyne: N-N addition across a C-C triple bond. If the diamination reaction can be extended it could ultimately provide a means of adding any general N-X (X = N, O, P) across any unsaturated C-element bond. This has the potential for a paradigm shift in the synthesis of 1,2-diamine and related compounds.In this project we will therefore develop the virtually unexplored area of early transition metal hydrazide chemistry, capable of delivering high-energy, highly reduced N-NR2 and related functional groups to a range of substrates in a 100% efficient, atom by atom manner. Our very recent synthetic methodology breakthroughs and preliminary reactivity studies provide a perfect and timely platform from which rapid progress can be launched. Working with a leading DFT computational Project Partner, we will deliver a fundamental toolbox for understanding and exploiting this unique reactivity in terms of scope, mechanism and applications in C-N, C-C and general C-heteroelement bond formation.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f8ef5bb235a573141859132e23bfe843&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down