Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large-volume air sample system for measuring 34S∕32S isotope ratio of carbonyl sulfide

Authors: Kamezaki, Kazuki; Hattori, Shohei; Bahlmann, Enno; Yoshida, Naohiro;

Large-volume air sample system for measuring 34S∕32S isotope ratio of carbonyl sulfide

Abstract

Knowledge related to sulfur isotope ratios of carbonyl sulfide (OCS or COS), the most abundant atmospheric sulfur species, remains scarce. An earlier method developed for sulfur isotopic analysis for OCS using S+ fragmentation by an isotope ratio mass spectrometer is inapplicable for ambient air samples because of the large samples required (approx. 500 L of 500 pmol mol−1 OCS). To overcome this difficulty, herein we present a new sampling system for collecting approximately 10 nmol of OCS from ambient air coupled with a purification system. Salient system features are (i) accommodation of samples up to 500 L (approx. 10 nmol) of air at 5 L min−1; (ii) portability of adsorption tubes (1∕4 in. (0.64 cm) outer diameter, 17.5 cm length, approximately 1.4 cm3 volume) for preserving the OCS amount and δ34S(OCS) values at −80 ∘C for up to 90 days and 14 days; and (iii) purification OCS from other compounds such as CO2. We tested the OCS collection efficiency of the systems and sulfur isotopic fractionation during sampling. Results show precision (1σ) of δ34S(OCS) values as 0.4 ‰ for overall procedures during measurements for atmospheric samples. Additionally, this report presents diurnal variation of δ34S(OCS) values collected from ambient air at the Suzukakedai campus of the Tokyo Institute of Technology located in Yokohama, Japan. The observed OCS concentrations and δ34S(OCS) values were, respectively, 447–520 pmol mol−1 and from 10.4 ‰ to 10.7 ‰ with a lack of diurnal variation. The observed δ34S(OCS) values in ambient air differed greatly from previously reported values of δ34S(OCS) = (4.9±0.3) ‰ for compressed air collected at Kawasaki, Japan, presumably because of degradation of OCS in cylinders and collection processes for that sample. The difference of atmospheric δ34S(OCS) values between 10.5 ‰ in Japan (this study) and ∼13 ‰ recently reported in Israel or the Canary Islands indicates that spatial and temporal variation of δ34S(OCS) values is expected due to a link between anthropogenic activities and OCS cycles. The system presented herein is useful for application of δ34S(OCS) for investigation of OCS sources and sinks in the troposphere to elucidate its cycle.

Keywords

34S∕32S isotope ; atmosphere ; carbonyl sulfide

40 references, page 1 of 4

Amrani, A., Said-Ahmad, W., Shaked, Y., and Kiene, R. P.: Sulfur isotope homogeneity of oceanic DMSP and DMS, P. Natl. Acad. Sci. USA, 110, 18413-18418, 2013.

Angert, A., Said-Ahmad, W., Davidson, C., and Amrani A.: Sulfur isotopes ratio of atmospheric carbonyl sulfide constrains its sources, Sci. Rep., 9, 1-8, 2019.

Bahlmann, E., Weinberg, I., Seifert, R., Tubbesing, C., and Michaelis, W.: A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons, Atmos. Meas. Tech., 4, 2073-2086, https://doi.org/10.5194/amt-4-2073- 2011, 2011. [OpenAIRE]

Berkelhammer, M., Asaf, D. Still, C., Montzka, S., Noone, D., Gupta, M., Provencal, R., Chen, H., and Yakir, D.: Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide, Global Biogeochem. Cy., 28, 161-179, https://doi.org/10.1002/2013GB004644, 2014.

Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D., and Zhu, Z.: A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle, J. Geophys. Res.-Biogeosci., 118, 842-852, 2013.

Brenninkmeijer, C. A. M., Janssen, C., Kaiser, J., Rockmann, T., Rhee, T. S., and Assonov, S. S.: Isotope effects in the chemistry of atmospheric trace compounds, Chem. Rev., 103, 5125-5161, 2003.

Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239-1253, https://doi.org/10.5194/acp-12-1239-2012, 2012. [OpenAIRE]

Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L., and Stanier, C. O.: Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season, Science, 322, 1085-1088, 2008.

Chin, M. and Davis, D. D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 100, 8993-9005, 1995.

Crutzen, P. J.: Possible importance of CSO for sulfate layer of stratosphere, Geophys. Res. Lett., 3, 73-76, 1976.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
European Marine Science
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.