Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A posteriori calculation of δ18O and δD in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H216O, H218O, and HD16O

Authors: N. V. Rokotyan; V. I. Zakharov; K. G. Gribanov; M. Schneider; F.-M. Bréon; J. Jouzel; R. Imasu; +5 Authors

A posteriori calculation of δ18O and δD in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H216O, H218O, and HD16O

Abstract

This paper investigates the scientific value of retrieving H218O and HDO columns in addition to H216O columns from high-resolution ground-based near-infrared spectra. We present a set of refined H216O, H218O, and HDO spectral windows. The retrieved H216O, H218O, and HDO columns are used for an a posteriori calculation of columnar δD and δ18O. We estimate the uncertainties for the so-calculated columnar δD and δ18O values. These estimations include uncertainties due to the measurement noise, errors in the a priori data, and uncertainties in spectroscopic parameters. Time series of δ18O obtained from ground-based FTIR (Fourier transform infrared) spectra are presented for the first time. For our study we use a full physics isotopic general circulation model (ECHAM5-wiso). We show that the full physics simulation of HDO and H218O can already be reasonably predicted from the H216O columns by a simple linear regression model (scatter values between full physics and linear regression simulations are 35 and 4‰ for HDO and H218O, respectively). We document that the columnar δD and δ18O values as calculated a posteriori from the retrievals of H216O, H218O, and HDO show a better agreement with the ECHAM5-wiso simulation than the δD and δ18O values as calculated from the H216O retrievals and the simple linear regression model. This suggests that the H218O and HDO column retrievals add complementary information to the H216O retrievals. However, these data have to be used carefully, because of the different vertical sensitivity of the H216O, H218O, and HDO columnar retrievals. Furthermore, we have to note that the retrievals use reanalysis humidity profiles as a priori input and the results are thus not independent of the reanalysis data.

Country
Germany
Subjects by Vocabulary

Library of Congress Subject Headings: lcsh:TA715-787 lcsh:Earthwork. Foundations lcsh:TA170-171 lcsh:Environmental engineering

73 references, page 1 of 8

Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0- 120 km), AFGL-TR-0110, Environmental Research Paper 954, Air Force Geophysics Laboratory, 43 pp., 1986.

Barber, R. J., Tennyson, J., Harris, G. J., and Tolchenov, R. N.: A high-accuracy computed water line list, Mon. Not. R. Astron. Soc., 368, 1087-1094, 2006. [OpenAIRE]

Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., and Uppala, S.: ERA report series - the ERAInterim archive Version 1.0, 2009.

Boesch, H., Deutscher, N. M., Warneke, T., Byckling, K., Cogan, A. J., Griffith, D. W. T., Notholt, J., Parker, R. J., and Wang, Z.: HDO / H2O ratio retrievals from GOSAT, Atmos. Meas. Tech., 6, 599-612, doi:10.5194/amt-6-599-2013, 2013.

Boone, C. D., Walker, K. A., and Bernath, P. F.: Speeddependent Voigt profile for water vapor in infrared remote sensing applications, J. Quant. Spectrosc. Ra., 105, 525-532, doi:10.1016/j.jqsrt.2006.11.015, 2007.

Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833-1834, 1961.

Coffey, M. T., Hannigan, J. W., and Goldman, A.: Observations of upper tropospheric/lower stratospheric water vapour and its isotopologues, J. Geophys. Res., 111, D14313, doi:10.1029/2005JD006093, 2006.

Coudert, L. H., Wagner, G., Birk, M., Baranov, Yu. I., Lafferty, W. J., and Flaud, J.-M.: The H16O molecule: line position and line 2 intensity analyses up to the second triad, J. Mol. Spectrosc., 251, 339-357, 2008.

Dansgaard, W.: Stable isotopes in precipitation, Tellus A, 16, 4, doi:10.3402/tellusa.v16i4.8993, 1964. [OpenAIRE]

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.- K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553-597, 2011.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
EC| MUSICA
Project
MUSICA
Multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water
  • Funder: European Commission (EC)
  • Project Code: 256961
  • Funding stream: FP7 | SP2 | ERC
Validated by funder
Related to Research communities
European Marine Science
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.