• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 6 versions
Publication . Other literature type . Article . 2022

European blue and green infrastructure network strategy vs. the common agricultural policy. Insights from an integrated case study (Couesnon, Brittany)

Houet Thomas; Palka Gaetan; Rigo Roberta; Boussard Hugues; Baudry Jacques; Poux Xavier; Narcy Jean-Baptiste; +6 Authors
Open Access
Published: 01 Sep 2022
Publisher: HAL CCSD
Country: France

International audience; Urbanization and agricultural intensification are the main drivers of biodiversity losses through multiple stressors, especially habitat fragmentation, isolation and loss. Designing Blue and Green Infrastructure Networks (BGIN) has been recommended as a potential tool for land-use planning to increase ecosystem services while preserving biodiversity. All municipalities in France are required to perform BGIN planning. This article focuses on the Couesnon watershed (Brittany, France) and the participatory process used to define and analyze five possible pathways of future land-use and land-cover changes that included implementation of BGINs. Impacts on biodiversity were estimated by quantifying the change in landscape connectivity of woodlands, grasslands and wetlands. The effectiveness of BGIN policies was assessed by comparing current landscape connectivity (2018) to those in possible futures. Landscape connectivity referred to functional connectivity for three indicator species (Abax parallelepipedus, Maniola jurtina and Arvicola sapidus) across three landscape features: woodlands, grasslands and wetlands, respectively. Results allowed impacts of urban and agricultural land-use changes to be identified in terms of extent and quality. If BGIN policies were applied effectively to control the expansion of gray infrastructure, they would help increase the area and the quality of grassland and woodland connectivity by no more than 2%. Agricultural land-use and land-cover changes could have more impact on the extent of grassland (− 82% to +38%) and wetland (− 49% to +47%) connectivity. Current and future trends for hedgerows implied a decrease in woodland connectivity of 9.8-33.8%. Impacts on the quality of landscape connectivity is not proportional with the extent, as a decrease of the latter can have relatively more negative impacts on the former, and inversely. The study highlights that the BGIN strategy can preserve landscape connectivity effectively in urban ecosystems, where human density is higher, but can be threatened by agricultural intensification.


[SHS.GEO]Humanities and Social Sciences/Geography, [SHS.ENVIR]Humanities and Social Sciences/Environmental studies, [SDE.ES]Environmental Sciences/Environmental and Society, Landscape connectivity, Biodiversity, Land use and cover changes, Modeling, Participatory approach, Environmental policies, Management, Monitoring, Policy and Law, Nature and Landscape Conservation, Geography, Planning and Development, Forestry

Funded by
EC| TerraNova
The European Landscape Learning Initiative: Past and Future Environments and Energy Regimes shaping Policy Tools
  • Funder: European Commission (EC)
  • Project Code: 813904
  • Funding stream: H2020 | MSCA-ITN-ETN
Related to Research communities
European Marine Science