Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NERC Open Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Space Weather
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Space Weather
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Development of a Space Climatology: 3. Models of the Evolution of Distributions of Space Weather Variables With Timescale

Authors: Mike Lockwood; Sarah Bentley; Mathew J. Owens; Luke Barnard; Chris J. Scott; Clare E. J. Watt; Oliver Allanson; +1 Authors

The Development of a Space Climatology: 3. Models of the Evolution of Distributions of Space Weather Variables With Timescale

Abstract

AbstractWe study how the probability distribution functions of power input to the magnetosphere Pα and of the geomagnetic ap and Dst indices vary with averaging timescale, τ, between 3 hr and 1 year. From this we develop and present algorithms to empirically model the distributions for a given τ and a given annual mean value. We show that lognormal distributions work well for ap, but because of the spread of Dst for low activity conditions, the optimum formulation for Dst leads to distributions better described by something like the Weibull formulation. Annual means can be estimated using telescope observations of sunspots and modeling, and so this allows the distributions to be estimated at any given τ between 3 hr and 1 year for any of the past 400 years, which is another important step toward a useful space weather climatology. The algorithms apply to the core of the distributions and can be used to predict the occurrence rate of large events (in the top 5% of activity levels): they may contain some, albeit limited, information relevant to characterizing the much rarer superstorm events with extreme value statistics. The algorithm for the Dst index is the more complex one because, unlike ap, Dst can take on either sign and future improvements to it are suggested.

Country
United Kingdom
Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Sunspot Space weather Earth's magnetic field Climatology Log-normal distribution Probability distribution Extreme value theory Sign (mathematics) Mathematics Weibull distribution

Keywords

Atmospheric Science, F300, F500, F900

Allen, J. H. (1982). Some commonly used magnetic activity indices: Their derivation, meaning, and use. In J. A. C. Joselyn (Ed.), Proceedings of a Workshop on Satellite Drag, March 18-19, 1982, Boulder, Colorado (pp. 114-134). Boulder, CO: NOAA\Space Environment Services Lab.

Baker, D. N. (2000). The occurrence of operational anomalies in spacecraft and their relationship to space weather. IEEE Transactions on Plasma Science, 28(6), 2007-2016. https://doi.org/10.1109/27.902228

Baker, D. N., Li, X., Pulkkinen, A., Ngwira, C. M., Mays, M. L., Galvin, A. B., & Simunac, K. D. C. (2013). A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather, 11, 585-591. https://doi.org/10.1002/swe.20097

Balan, N., Batista, I. S., Tulasiram, S., & Rajesh, P. K. (2016). A new geomagnetic storm parameter for the severity of space weather. Geoscience Letters, 3, 3. https://doi.org/10.1186/s40562‐016‐0036‐5 [OpenAIRE]

Balch, C. C. (2008). Updated verification of the Space Weather Prediction Center's solar energetic particle prediction model. Space Weather, 6, S01001. https://doi.org/10.1029/2007SW000337

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 10
    download downloads 34
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
  • 10
    views
    34
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
14
Top 10%
Average
Top 10%
10
34
bronze