Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Weather and Forecast...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Weather and Forecasting
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Simulation of Rapid Weakening of Hurricane Joaquin with Assimilation of High-Definition Sounding System Dropsondes during the Tropical Cyclone Intensity Experiment: Comparison of Three- and Four-Dimensional Ensemble–Variational Data Assimilation

Authors: Shixuan Zhang; Zhaoxia Pu;

Numerical Simulation of Rapid Weakening of Hurricane Joaquin with Assimilation of High-Definition Sounding System Dropsondes during the Tropical Cyclone Intensity Experiment: Comparison of Three- and Four-Dimensional Ensemble–Variational Data Assimilation

Abstract

Abstract Observations from High-Definition Sounding System (HDSS) dropsondes, collected for Hurricane Joaquin during the Office of Naval Research Tropical Cyclone Intensity (TCI) field experiment in 2015, are assimilated into the NCEP Hurricane Weather Research and Forecasting (HWRF) Model. The Gridpoint Statistical Interpolation (GSI)-based hybrid three-dimensional and four-dimensional ensemble–variational (3DEnVar and 4DEnVar) data assimilation configurations are compared. The assimilation of HDSS dropsonde observations can help HWRF initialization by generating consistent analysis between wind and pressure fields and can also compensate for the initial maximum surface wind errors in the absence of initial vortex intensity correction. Compared with GSI–3DEnVar, the assimilation of HDSS dropsonde observations using GSI–4DEnVar generates a more realistic initial vortex intensity and reproduces the rapid weakening (RW) of Hurricane Joaquin, suggesting that the assimilation of high-resolution inner-core observations (e.g., HDSS dropsonde data) based on an advanced data assimilation method (e.g., 4DEnVar) can potentially outperform the vortex initialization scheme currently used in HWRF. Additionally, the assimilation of HDSS dropsonde observations can improve the simulation of vortex structure changes and the accuracy of the vertical motion within the TC inner-core region, which is essential to the successful simulation of the RW of Hurricane Joaquin with HWRF. Additional experiments with GSI–4DEnVar in different configurations also indicate that the performance of GSI–4DEnVar can be further improved with a high-resolution background error covariance and a denser observational bin.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
bronze