Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NARCIS; Marine Ecolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marine Ecology Progress Series
Article . 2009 . Peer-reviewed
Data sources: Crossref; NARCIS
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Factors affecting nematode biomass, length and width from the shelf to the deep sea

Authors: Soetaert, K.E.R.; Franco, M.A.; Lampadariou, N.; Muthumbi, A.; Steyaert, M.; Vandepitte, L.; Vanden Berghe, E.; +1 Authors

Factors affecting nematode biomass, length and width from the shelf to the deep sea

Abstract

The decrease of nematode size with water depth is well documented in the literature. However, many nematode size data sets originate from bathymetric gradients, with strong bias towards deep-water, muddy sediments. This has narrowed our perception of the environmental fac- tors that may influence nematode morphometry. Here we perform a morphometric analysis with data collected from a variety of sampling locations in the Indian Ocean and around Europe at a wider range of depths and sediment types. All nematode size descriptors decreased significantly with water depth, which explained more than 60% of total variation. This trend was most pronounced for mean nematode dry weight, which decreased by ~20% for every doubling in water depth. This coefficient of decrease was smaller than the described decline in food deposition with depth, as estimated from sediment community oxygen consumption rates (~35%), but on the same order of magnitude as the decrease in nematode density. Order of magnitude estimates based on these trends suggest that nematodes contribute about 7.5% to benthic metabolism over the depth range. In contrast to nema- tode dry weight, the decrease in nematode length and width with water depth was less steep. How- ever, nematode length was also affected by grain size, where shallow-water coarse sediments were inhabited by longer nematodes. Nematodes from the oligotrophic Aegean Sea were characterised by low length values and high width values, probably as an adaptation to sediments poor in organic mat- ter. These observations suggest that local factors can also be very important for shaping the morpho- metric landscape of the nematode communities.

Country
Netherlands
Subjects by Vocabulary

Microsoft Academic Graph classification: Soil science Deep sea Deposition (geology) Mediterranean sea Dry weight Biomass (ecology) biology Sediment biology.organism_classification Nematode Oceanography Benthic zone

Keywords

Nematoda [Nematodes], Data analysis, Aquatic Science, ANE, Belgium, Belgian Continental Shelf (BCS), Environmental factors, Biomass, Ecology, Evolution, Behavior and Systematics, Water depth, Ecology, Morphometry, Respiration, Body size, Deep sea, Shelves

41 references, page 1 of 5

Andersson JH, Wijsman JWM, Herman PMJ, Middelburg JJ, Soetaert K, Heip C (2004) Respiration patterns in the deep ocean. Geophys Res Lett 31:L03304, doi:10.1029/2003GL 018756

Andrassy I (1956) The determination of volume and weight of nematodes. Acta Zool 2:1-15

Broun CJ, Lambshead PJD, Smith CR, Hawkins LE, Farley R (2001) Phytodetritus and the abundance of biomass of abyssal nematodes in the central, equatorial Pacific. DeepSea Res I 49:843-857

Finney DJ (1941) On the distribution of a variate whose logarithm is normally distributed. Suppl J R Stat Soc 7: 155-161 [OpenAIRE]

Franco MA, De Mesell M, Diallo MD, Van der Gucht K and others (2007) Effect of phytoplankton bloom deposition on benthic bacterial communities in two contrasting sediments in the southern North Sea. Aquat Microb Ecol 48: 241-254

Franco MA, Soetaert K, Van Oevelen D, Van Gansbeke D, Costa MJ, Vincx M, Vanaverbeke J (2008) Density, vertical distribution and trophic responses of metazoan meiobenthos to phytoplankton deposition in contrasting sediment types. Mar Ecol Prog Ser 358:51-62 [OpenAIRE]

Gambi C, Danovaro R (2006) A multiple-scale analysis of metazoan meiofaunal distribution in the deep Mediterranean Sea. Deep-Sea Res I 53:1117-1134 [OpenAIRE]

Heip CHR, Duineveld G, Flach E, Graf G and others (2001) The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Res II 48:3223-3243 [OpenAIRE]

Johnson NA, Campbell JW, Moore TS, Rex MA, Etter RJ, McClain CR, Dowell MD (2007) The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep-Sea Res I 54:1350-1360

Lampadariou N, Tselepides A (2006) Spatial variability of meiofaunal communities at areas of contrasting depth and productivity in the Aegean Sea (NE Mediterranean). Prog Oceanogr 69:19-36 [OpenAIRE]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze