Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Measurements of the temperature field of mushy and liquid regions during solidification of aqueous ammonium chloride

Authors: Tom Solomon; R. R. Hartley;

Measurements of the temperature field of mushy and liquid regions during solidification of aqueous ammonium chloride

Abstract

Experiments are conducted to study the solidification from below of aqueous ammonium chloride. Thermochromic liquid crystal paints are used to visualize the temperature field simultaneously in both the liquid and the mushy layers. In a quasi-two-dimensional cell (thickness 10 mm), mushy-layer and boundary-layer convection are revealed as bumps in isotherms within and above the mushy layer, respectively. The onset, growth and decay of these convective modes are measured by monitoring the progression of the bumps during an experiment. The small-wavelength boundary-layer mode is short-lived (approximately 20–30 min), whereas the larger-wavelength mushy-layer mode survives for several hours, dominating the flow even long after the growth has stopped. Experiments in a Hele-Shaw cell (thickness 2.0 mm) enable simultaneous visualization of both the temperature field and the solid fraction. A coarsening mechanism is observed in which the flow spontaneously changes, reducing the strength of plume convection in one of the channels, and leading to growth of dendrites into the channel. An oscillatory convective mode is also observed, perhaps an indication of one of the oscillatory modes recently predicted by Chen, Lu & Yang (1994) and by Anderson & Worster (1995).

Subjects by Vocabulary

Microsoft Academic Graph classification: Convection Thermochromism Aqueous solution Materials science Flow (psychology) Analytical chemistry Plume chemistry.chemical_compound Hele-Shaw flow chemistry Liquid crystal Ammonium chloride

Keywords

Mechanical Engineering, Condensed Matter Physics, Mechanics of Materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Average
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.