
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
GSI Three-Dimensional Ensemble–Variational Hybrid Data Assimilation Using a Global Ensemble for the Regional Rapid Refresh Model

GSI Three-Dimensional Ensemble–Variational Hybrid Data Assimilation Using a Global Ensemble for the Regional Rapid Refresh Model
The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensional hybrid ensemble–variational assimilation option to the RAP high-resolution, hourly cycling system and shows the skill improvements of 1–12-h forecasts of upper-air wind, moisture, and temperature over the purely three-dimensional variational analysis system. Use of perturbation data from an independent global ensemble, the Global Data Assimilation System (GDAS), is demonstrated to be very effective for the regional RAP hybrid assimilation. In this paper, application of the GSI-hybrid assimilation for the RAP is explained. Results from sensitivity experiments are shown to define configurations for the operational RAP version 2, the ratio of static and ensemble background error covariance, and vertical and horizontal localization scales for the operational RAP version 3. Finally, a 1-week RAP experiment from a summer period was performed using a global ensemble from a winter period, suggesting that a significant component of its multivariate covariance structure from the ensemble is independent of time matching between analysis time and ensemble valid time.
- Earth System Research Laboratory United States
- University of Colorado Boulder United States
- National Oceanic and Atmospheric Administration United States
- Cooperative Institute for Research in Environmental Sciences United States
5 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
