
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of Assimilating Aircraft Reconnaissance Observations on Tropical Cyclone Initialization and Prediction Using Operational HWRF and GSI Ensemble–Variational Hybrid Data Assimilation

Impact of Assimilating Aircraft Reconnaissance Observations on Tropical Cyclone Initialization and Prediction Using Operational HWRF and GSI Ensemble–Variational Hybrid Data Assimilation
Abstract This study evaluates the impact of assimilating high-resolution, inner-core reconnaissance observations on tropical cyclone initialization and prediction in the 2013 version of the operational Hurricane Weather Research and Forecasting (HWRF) Model. The 2013 HWRF data assimilation system is a GSI-based hybrid ensemble–variational system that, in this study, uses the Global Data Assimilation System ensemble to estimate flow-dependent background error covariance. Assimilation of inner-core observations improves track forecasts and reduces intensity error after 18–24 h. The positive impact on the intensity forecast is mainly found in weak storms, where inner-core assimilation produces more accurate tropical cyclone structures and reduces positive intensity bias. Despite such positive benefits, there is degradation in short-term intensity forecasts that is attributable to spindown of strong storms, which has also been seen in other studies. There are several reasons for the degradation of intense storms. First, a newly discovered interaction between model biases and the HWRF vortex initialization procedure causes the first-guess wind speed aloft to be too strong in the inner core. The problem worsens for the strongest storms, leading to a poor first-guess fit to observations. Though assimilation of reconnaissance observations results in analyses that better fit the observations, it also causes a negative intensity bias at the surface. In addition, the covariance provided by the NCEP global model is inaccurate for assimilating inner-core observations, and model physics biases result in a mismatch between simulated and observed structure. The model ultimately cannot maintain the analysis structure during the forecast, leading to spindown.
- M-Systems
- NOAA Environmental Modeling Center United States
- Atlantic Oceanographic and Meteorological Laboratory United States
- Geophysical Fluid Dynamics Laboratory United States
- National Oceanic and Atmospheric Administration United States
5 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
