Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Weather Revi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Weather Review
Article
License: implied-oa
Data sources: UnpayWall
Monthly Weather Review
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and 3D-Hybrid Results

Authors: Daryl T. Kleist; Kayo Ide;

An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and 3D-Hybrid Results

Abstract

Abstract An observing system simulation experiment (OSSE) has been carried out to evaluate the impact of a hybrid ensemble–variational data assimilation algorithm for use with the National Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE provides a controlled framework for evaluating analysis and forecast errors since a truth is known. In this case, the nature run was generated and provided by the European Centre for Medium-Range Weather Forecasts as part of the international Joint OSSE project. The assimilation and forecast impact studies are carried out using a model that is different than the nature run model, thereby accounting for model error and avoiding issues with the so-called identical-twin experiments. It is found that the quality of analysis is improved substantially when going from three-dimensional variational data assimilation (3DVar) to a hybrid 3D ensemble–variational (EnVar)-based algorithm. This is especially true in terms of the analysis error reduction for wind and moisture, most notably in the tropics. Forecast impact experiments show that the hybrid-initialized forecasts improve upon the 3DVar-based forecasts for most metrics, lead times, variables, and levels. An additional experiment that utilizes 3DEnVar (100% ensemble) demonstrates that the use of a 25% static error covariance contribution does not alter the quality of hybrid analysis when utilizing the tangent-linear normal mode constraint on the total hybrid increment.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 1%
Top 10%
Top 1%
hybrid