Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2015
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Other literature type . Article . 2015 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2015
Data sources: DOAJ-Articles
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-Term Hyperphagia and Caloric Restriction Caused by Low- or High-Density Husbandry Have Differential Effects on Zebrafish Postembryonic Development, Somatic Growth, Fat Accumulation and Reproduction

Authors: Sandra Leibold; Matthias Hammerschmidt;

Long-Term Hyperphagia and Caloric Restriction Caused by Low- or High-Density Husbandry Have Differential Effects on Zebrafish Postembryonic Development, Somatic Growth, Fat Accumulation and Reproduction

Abstract

In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation.

Subjects by Vocabulary

Microsoft Academic Graph classification: medicine.medical_specialty Bioenergetics media_common.quotation_subject Adipose tissue White adipose tissue Biology Energy homeostasis Internal medicine medicine Metamorphosis Zebrafish media_common Caloric theory biology.organism_classification medicine.disease Obesity Endocrinology

Library of Congress Subject Headings: lcsh:Medicine lcsh:Science lcsh:R lcsh:Q

Keywords

Male, Science, Hyperphagia, Adipocytes, Animals, Body Fat Distribution, Zebrafish, Caloric Restriction, Cell Size, Multidisciplinary, Reproduction, Q, Body Weight, R, Medicine, Female, Energy Intake, Energy Metabolism, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Average
Top 10%
Green
gold