Powered by OpenAIRE graph
Found an issue? Give us feedback

Water-Futures

Smart Water Futures: designing the next generation of urban drinking water systems
Funder: European CommissionProject code: 951424 Call for proposal: ERC-2020-SyG
Funded under: H2020 | ERC | ERC-SyG Overall Budget: 9,982,320 EURFunder Contribution: 9,982,320 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
900
2K

Water-Futures

Description

The world population living in urban settlements is expected to increase to 70% of 9.7 billion by 2050. Historically, as cities grew, new water infrastructures followed as needed. However, these developments had less to do with real planning than with reacting to crisis situations and urgent needs, due to the inability of urban water planners to consider long-term, deeply uncertain and ambiguous factors affecting urban development and water demand. These, coupled with increasingly uncertain climate conditions, indicate the need for a more holistic and intelligent decision-making framework for managing water infrastructures in the cities of the future. This project aims to develop a new theoretical framework for the allocation and development decisions on drinking water infrastructure systems, so that they are socially equitable, economically efficient and environmentally resilient, as advocated by the UN Agenda 2030, Sustainable Development Goals. The framework will integrate real-time monitoring and control with long-term robustness and flexibility-based pathway methods, and incorporate economic, social, ethical and environmental considerations for sustainable transitioning of urban water systems under deep uncertainty with multiple possible futures. The Water-Futures team will build on synergies from the four research groups, transcending methodologies from water science, systems and control theory, economics and decision science, and machine learning, into an integrated decision and control framework, to be implemented as an open-source research toolbox. The new science outcomes will be applied to three case studies exemplifying different types of urban water systems: a mature, relatively stable system; a mature and rapidly expanding system; and a relatively recent supply system in a developing country with high growth and special challenges, including limited resources, intermittent supply and high water losses.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 900
    download downloads 2K
  • 900
    views
    2K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ed4620305a0c8d8f55aa34b3f643bc9e&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down